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S U M M A R Y  
A series solution is presented for the steady, laminar flow produced by a rotating disc. The series consists solely of 
exponential terms with negative exponents. It is shown that this approach yields uniformly valid solutions of high 
accuracy for all cases of suction and for low values of injection at the disc surface. The radius of convergence of the 
series is determined. For those injection cases for which the direct series method fails, an integral method is 
presented which is based on the properties of the series. The latter method consists of obtaining differential 
equations which represent the behaviour of the sums of the series. This method allows the solution of the governing 
differential equations as an initial value problem. 

I. Introduction 

The flow induced by the steady rotation of a flat impermeable disc in a fluid which has no 
rotation far from the disc has received considerable attention over the years. Von Kfirm~in 
[1] noted first that the governing Navier-Stokes equations reduce to self-similar forms and 
obtained an approximate solution using his momentum integral method. Cochran [2] 
obtained a more accurate numerical solution using the approach used by Blasius [3] in his 
study of the laminar boundary layer on a flat plate in a uniform stream. This approach was 
to develop two analytical series solutions, one valid far from the disc and the other valid 
near the disc, the two being matched by numerical calculation at an intermediate position in 
the flow. The interesting point, so far as the present investigation is concerned, is that the 
three series used to describe the flow far from the disc have relatively simple forms, 
consisting solely of exponential terms with negative exponents. 

More recently the rotating disc problem has been extended to include uniform suction or 
injection at the disc surface. Stuart [4] considered the situation in which there is strong 
suction and obtained an analytical series solution for this case. Kuiken [5] examined the 
case of strong injection and found that the flow divides into inner and outer layers, the inner 
layer being shown to be inviscid to first order. Kuiken [5] then obtained higher order 
(viscous) terms using the method of matched asymptotic expansions. Direct numerical 
integration of the governing ordinary differential equations, covering cases of both suction 
and injection, was carried out by Sparrow and Gregg [6]. 

It is relevant to turn briefly to another but related problem, that of the steady laminar 
boundary-layer motion on a moving flat conveyor belt. The fluid far from the moving belt is 
nominally at rest and Ackroyd [7] showed that the solution to the governing self-similar 
form of the momentum equation can be obtained by the use of a series solution which is 
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uniformly valid throughout the boundary-layer flow. This series solution consists solely of 
exponential terms with negative exponents. An identical approach was used by Lock [8] to 
obtain part of the solution to the problem of the laminar merging of two uniform parallel 
streams. The conveyor belt problem was extended by Samuel and Hall [9] to include both 
suction and injection effects at the belt surface. Here, a simple modification of the 
exponential series was found to accommodate all suction cases and a range of injection 
cases. Samuel and Hall [9] also discussed the question of the convergence of Ackroyd's [7] 
series and developed a rather ingenious method for locating the position of the singularity of 
the series and hence its radius of convergence. The method was based on the fact that the 
sum of the exponential series must satisfy the original ordinary differential equation 
governing the boundary-layer flow. The method has additional value in that it allows 
solutions for all cases of suction and injection to be obtained by the single integration of the 
ordinary differential equation representing the sum of the series. Samuel and Hall [9] 
showed further that not only was the latter differential equation capable of being posed as an 
initial value problem but that its integration produced solutions for injection cases beyond 
the radius of convergence of the series upon which it was based. The method produced a 
most useful example of analytic continuation. 

The above-noted features of the conveyor belt problem led the present author to the belief 
that many more viscous flows which are induced bY the steady motion of a surface in a fluid 
nominally at rest might be described by such exponential series solutions. The argument in 
support of this belief can be expressed as follows. Provided the flow exhibits self-similar 
properties, the governing ordinary differential equations for the viscous flow should always 
yield a behaviour at the outer region which has an exponential series form. Whether or not 
such exponential series provide uniformly valid solutions throughout the whole of the 
viscous flow will depend then on the convergence properties of the particular series. The 
approach of Samuel and Hall [9] provides a rapid and accurate method for assessing the 
convergence properties of such series. So far as the rotating disc problem is concerned, the 
exponential series of Cochran [2] provided encouragement for this belief. Initial calcu- 
lations for the rotating disc problem, described in Sections 2 and 3 of the present paper, 
quickly confirmed that such series provide uniformly valid solutions for all suction and 
some injection cases. It was at this stage that the work of Fettis [10] and Benton [11] came 
to light. It was found that an identical approach to the present one had been used by Benton 
[11] for the impermeable disc, Benton [11], in turn, having based his approach on the 
earlier but slightly different approach of Fettis [10]. 

Fettis [10] had been concerned largely with the problem of B6dewadt [12] in which solid 
body rotation occurs in the flow far from the rotating disc. However, Fettis [10] showed 
that when no solid body rotation occurs, his approach produced a solution consisting solely 
of exponential terms with negative exponents. He went on to discuss very briefly certain 
cases in which suction occurs at the disc surface. His method consisted of the well-known 
procedure for finding the asymptotic behaviour of the governing differential equations as 
the outer edge of the viscous flow is approached; the equations are expanded in terms of a 
convenient parameter. In this way, an infinite sequence of ordinary linear differential 
equations was generated and Fettis [10] solved the first eight of these analytically. Because 
he believed that this approach provided solutions which are uniformly valid throughout the 
flow, he evaluated the integration constants introduced at each successive term of his 
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solution by the use of the boundary conditions at the disc surface. Now, successive analytical 
solutions of the linear ordinary differential equations introduce successively higher powers 
of exponential terms together with further terms of lower powers. Consequently, it follows 
that Fettis's [10] method provides only an approximation to the coefficient of any given 
power of an exponential term. The sheer algebraic labour in obtaining analytical solutions 
for the successively more lengthy ordinary differential equations militates against the use of 
the method if high numerical accuracy is required. This difficulty was overcome by Benton 
[11], using an infinite series of exponential terms. As Benton [11] showed, substitution of this 
series into the governing differential equations allows recurrence relations to be established 
between successive coefficients in the series. Thus, in principle, the series can be summed to 
any desired degree of accuracy. This approach is identical to that adopted by Lock [8] and 
Ackroyd [7]. Benton [11] had been concerned mainly with the impulsive rotation of a disc 
from rest and obtained the steady flow solution (i.e. von Kfirmfin's [1] case), using this 
method, in order to provide an accurate check on the development of his unsteady solution 
at large time after the initiation of the disc motion. Thus, the present investigation can be 
seen as an extension of Fettis's [10] and Benton's [11] work to include a more general 
discussion of suction and injection cases, together with an extended discussion of the 
problems of convergence. 

In Section 3 of the present paper it is shown that the series solution is in complete 
agreement with Stuart's [4] case of strong suction. In Section 4 the method of Samuel and 
Hall [9J is adapted to the present problem and the radii of convergence of the two series for 
various values of the suction or injection parameter are obtained. It is also shown that the 
method allows solutions to be obtained beyond the radius of convergence of these series. 
This, in itself, appears to be of no great benefit, since the original ordinary differential 
equations for the flow can be integrated numerically for those cases in which the original 
series method falls outside the range in which series convergence is assured. However, the 
method has the useful feature that the problem of integrating the ordinary differential 
equations representing the sums of the two series is recast as an initial value problem 
whereas originally it was posed as a two-point boundary value problem. 

2. Similarity equations and series solution 

In considering the fluid motion caused by the rotating disc, we use cylindrical polar co- 
ordinates r, ~b, z and denote the corresponding velocity components by u, v, w. The disc 
surface occupies the plane z = 0 and rotates about the z-axis with constant angular velocity 
o9. Following von Kfirm~m [1], we write 

u = rogF(~), v = ro9G(~), w = x / ~ H ( ~ ) ,  ~ = zx /~ /v .  (1) 

We denote the difference between the actual and the hydrostatic pressures by p and write 

p = pvo9P(~). (2) 

In terms of the non-dimensional variables F, G, H and P defined in equations (1) and (2), the 
continuity and Navier-Stokes equations in cylindrical polar form become 
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2F + H' = 0, F 2 - G 2 d- F ' H  = F", 

2FG + HG'  = G", H" - H H '  = P'. 
(3) 

Dashes denote differentiation with respect to the independent variable (. 
We suppose that the disc is porous and that either uniform suction or injection occurs 

there such that 

w(0) = -x/~-~A. (4) 

The parameter A is a constant and A > 0 corresponds to the suction case. The boundary 
conditions attached to equations (3) are, therefore, 

F(O) = 0 ,  G ( O ) =  1, H ( O ) = - A ,  

F (oo )=0 ,  G(oo)=0,  P(oo)=O. 
(5) 

It follows from equations (3) and (5) that as ( ~ 0% H ~ - c  (c > 0), so that far from the 
disc a uniform flow toward the disc is induced by the disc motion. The unknown constant, c, 
is a function of A only. Use of the first and the last of the equations (3), together with the 
boundary conditions (5), yields the result for the non-dimensional pressure field 

: ( H : )  
P -  2 2 F + ~ -  , 

so that (6) 

P(O) = ½(c 2 - A2). 

Cochran's [2] work suggests that, for large values of (, the solutions for F, G and H can be 
written as the following infinite series: 

0O 00 o0 

e - nc~ F = 2 . . a .  , G = ~ b . e  - '<,  H = - c + Z G e  - ~ .  (7) 
1 1 1 

Substitution of the above series into the first three of equations (3) yields 

2 a  n c. - , (8) 
n¢  

together with the recurrence relations for a. and b. for n > 1, 

3q - 2n 
a. - c2n( n q~l= aqa._q - b~b._q , 

2 . - 1  2 q - n  
b .  - c 2 n (  n _ 1) ~ q a q b . _ q .  

q = l  

(9) 

For future reference, a. and b. for 2 ~< n ~< 6 are given in Table 1 in terms o f a  v b 1 and c. The 
values of a, and b. for 2 ~< n ~< 4 in this table correspond to those obtained by Cochran [2]. 
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TABLE 1 

Coefficients of a., b. in terms of a 1, b 1 and c 

211 

n a n b n 

1 
2 2c 2 (a~ + b~) 0 

3 4c'*a' (a~ + b~) 12c'*b' (a~ + b~ 2) 

4 (a2~ + b~) (17a~ + b~) aibl (a~ + b~) 
144c 6 18C 6 

5 ax(a21152c 8 + b2) (61a~ + 13b~) b~(a21920c8 + b2) (53a 2 + 5b 2) 

aibl(a ~ + b~) (a~ + b~) {219 a4 146 a2b2 7 b~ (65a~ + 17b~) 
6 480c 1° \ 2 0  1 + ~ -  i 1 + ~  5400c10 

It is our intention to demonstrate that the series (7) provide uniformly valid solutions to 
the equations (3) (with boundary conditions (5)) for a useful range of values of A. As has 
been remarked earlier, Benton [11], working in terms of b,/c 2 and c,/c, has established this 
point already for the case A = 0. Furthermore, Fettis's [10] less detailed calculations indicate 
that the series (7) might be applicable to suction cases (A > 0). Therefore, for the range of A 
for which the series (7) remain uniformly valid, application of the three boundary conditions 
at ( = 0 (equations (5)) allows the simultaneous determination of a 1, bl and c. We note that 
these three parameters are functions of A only. Thus, from equations (5) and (7) we obtain 

~,a,=O, (~ ,b . ) -  1 =0, c ( c - A )  
l 1 2 - O. (10)  

For certain circumstances, rather more useful forms of the series (7) can be developed by 
writing 

b n = a " < 2 ( , )  c 2 ( ' ) A ° ,  b . :  
"" iv )  \7) 

Z =  al ,~-< K -  al 
c 2 - , bl  

(11) 

Thus 

F=c2f(Z;K),  G=cZg(Z;K), H =  - c ( 1 - 2 h ( Z ; K ) ) ,  

where (12) 
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Note that the dependence of f, 9 and h on K is a parametric dependence only and that K 
depends solely on A. The recurrence relations for A. and B. can be obtained directly from 
equations (9) and (11) but now 

A 1 = B 1 = 1, 

with 

1 .-1 (3q - 2n BqB._q_'~ 
a . -  n ( n -  1) , ~ l , ~ A q A " - q  K" / '  (13) 

2 ,-1 2 q - n  
Bn - n(n-- ~' ~ KqAqBn-q" 1) q = l  

Equations (10) become 

~o ( ~  (~_~9_o),)1 ( ~ O A , ) l _ ( A / c )  
~'a AnZ"° = 0, B.  - ~ -  = 0, \ 1  n E  Z~ 2 = 0, (14) 

where Z o = al/c 2 is the value of Z at ~ = 0. 
Two alternative methods were employed in the numerical determination of a l, b 1 and c in 

which either equations (10) or equations (14) were used. In both methods, the relevant series 
were terminated at the m-th term, the value of m being subsequently increased until the 
required accuracy was achieved. In both methods it is necessary to employ an iterative 
procedure in order to search for the correct values of the relevant parameters. Since most of 
the terms in the series turn out to alternate in sign, it was found to be useful to use Aitken's 
62 method with each series in order to accelerate convergence. In all cases, Newton's method 
was found to be quite adequate for use in the iterations. 

In the first method, for a selected value of A, equations (10) were employed in order to 
search for those values of a 1, b 1 and c which provided values for the left hand sides of 
equations (10) which were all less than 10-lo. The value of m was increased progressively 
until Aitken's corrections for the three series (10) had decayed to less than 10-lo. At this 
stage, it was seen that the values of a 1, b 1 and c had ceased to vary with m up to and 
including the ninth decimal place. 

In the second method, employing equations (14), selection of a value for K allowed Z 0 to 
be determined by iteration on the first of equations (14) only. Note that, according to 
equations (13), A, depend directly on K. Values of c and A then followed immediately from 
the second and third of equations (14). Iteration was then performed on the value of K until 
the desired value of A had been achieved. 

Despite the apparent attraction of the second method, in practice there was found to be 
little to choose between the two methods and they produced results which were virtually 
indistinguishable. Finally, both methods were used to calculate F'(0) and G'(0) from the 
relations 

oo or3 

F'(0) = - c Z na. = - c3Zo Y~ nA.Z" o- 1, 
1 1 

G'(0)= - c Z n b  n= - c  a Z° / Z  \.-i (15) 
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Aitken's ~2 method was used here once again to accelerate convergence. In most cases, it 
was found to be necessary to increase m beyond that value required for the determination of 
a 1, b 1 and c in order to ensure that Aitken's corrections in the series for F'(0) and G'(0) had 
decayed to less than 10-lo. 

The values of al, bx, c, F'(0), G'(0) and P(0) (from equations (6)), determined in the above 
manner for a particular value of A, are reproduced in Table 2. The approximate values of m 
necessary to satisfy the accuracy requirements are indicated in the table. It will be seen that, 
from Table 2, whereas suction cases (A > 0) require remarkably small values of m, m 
becomes prohibitively large as the injection rate increases ( -  A increases). In the latter cases, 
series convergence became exceedingly slow. 

The results given in Table 2 confirm the values of the relevant parameters calculated by 
Benton [11], who quotes values to six figure accuracy for the case A = 0. In the case of the 
calculations briefly noted by Fettis [10] for suction cases, it was found that the values for c 
quoted there are in error after the third decimal place. However, it should be noted that 
Fettis [10] terminated his series at m = 8 and that, by the nature of his approach, his 
determination of a, and b n for n ~< 8 is necessarily incomplete. As for the results provided to 
four figures by Sparrow and Gregg [6], obtained by the direct numerical integration of 
equations (3), where comparison can be made with the present calculations (i.e. A = 31 2, 0, 
-0 .5 )  complete agreement occurs. 

3. The case of strong suction 

The behaviour of F(O, G(() and H(O for the situation in which A --. oo (the strong suction 
case) was examined in detail by Stuart [4]. As this limit is approached, Stuart [4] found that 
the viscous region in contact with the disc becomes progressively thinner and that H ~ - A. 
In the present context, from equations (7), this suggests that c ~ A. Furthermore, the results 
for m in Table 2 suggest that for A ~ ov the series (10) become completely dominated by 
their leading terms. Thus we might expect that b I ~ 1, a 1 ~ 0 as this limit is approached. In 
carrying out a detailed comparison between Stuart's [4] series solution and the present 

T A B L E  2 

Results~ral, bl, c,F'(O),G'(O),P(O),mobtained~omequations(lO)and(14 ) 

m 
A a I b~ c F'(0) - G'(0) P(0) 

(approximate) 

3 0.0550069888 1.001006605 3.018208248 0.1655778258 3.0121418847 0.0547905145 8 

2 0.1192886125 1.004699961 2.057722613 0.2424161848 2.0385268141 0.1171111765 10 

1 0.3391879035 1.035820071 1.260553113 0.3895662270 1.1752208122 0.2944970754 20 

0 0.9248635311 1.202211750 0.8844741102 0.5102326189 0.6159220144 0.3911472258 50 

-0 .2  1.098698978 1.261946133 0.8484350265 0.5162650179 0.5379560054 0.3399209971 90 

-0 .4  1.296042868 1.331974733 0.8195304869 0.5164467222 0.4683615657 0.2558151096 200 

-0 .5  1.404491564 1.371093196 0.8072116676 0.5145662968 0.4364319473 0.2007953382 400 

-0.55 1.461349736 1.391726933 0.8015071103 0.5131762756 0.4211439279 0.1699568239 1000 
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approach, it is rather more useful to use the series in the forms of equations (10) rather than 
equations (14). It can be shown that for A ~ ~ ,  a I ~ 1/(2A 2) so that we can write 

a 1 "~ S 1 / ( 2 A 2 ) ,  b 1 ~- S2,  c ~ A S  3. (16)  

By inspection of the coefficients a, and b, (see Table 1) in the series (10), we see that the series 
S~ (i = 1, 2, 3) must take the forms 

O~i fli ~12 16). S ~  1 + ~ - + - ~ +  +O(A- (17) 

The coefficients ~i, •i and 7i can be determined by the substitution of the series (17) into the 
equations (10), using the values for a,, b, given in Table 1. The values for cti, fll and 7i 
determined in this manner are given in Table 3. Use of these results, in conjunction with the 
results for a,, b, in Table 1 and the series (7), yields expressions for F((), G(() and H(() which 
are identical to those obtained by Stuart [4] (his equations (3.10), (3.11) and (3.12)). In order 
to reproduce Stuart's 1-4] results, it is necessary to know a, for n ~< 6 and it is for this reason 
that the results given in Table 1 have been determined to that level. For the same reason, it is 
necessary to know 73 only so that the determination of 71 and Y2 can be omitted. 

4. Application of the method of Samuel and Hall 

As noted in Section 2, the series (10) experience convergence difficulties at quite modest 
negative values of A (the injection case). Similar difficulties were encountered by Samuel and 
Hall I9] in their related study of the laminar boundary layer flow on a porous conveyor belt. 
As has been mentioned earlier, the method developed by Samuel and Hall 1'9] for dealing 
with this difficulty consists of obtaining differential equations which represent the behaviour 
of the sums of the series. In this particular application, it is convenient to use the series 
expressed in the forms given in equations (12). 

Substitution of the equations (12) into the differential equations (3) yields the following 
five simultaneous first order differential equations in terms of the independent variable Z: 

TABLE 3 

Coefficients~i, fli, yi 

59 28369 
1 

72 17280 

1 173 
2 

12 1152 

201 
1 3 ~- 288 
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af 
- U,  f ( 0 ;  K )  = O, 

dZ 

dg 
- V,, g(O; K )  = O, 

dZ 

dh f 

dZ Z '  
h(O; K) = O, (18) 

dU _ 1 (f2 _ g2 _ 2ZhU), 
dZ Z 2 

U(O; K) = 1, 

dV 2 1 
dZ - Z 2 (f9 - ZhV), V(O; K) - K '  

The last two boundary conditions are obtained from the series (12) and the additional use of 
the recurrence relations (13) establishes that at 

( dh =1,  dU 1 + - - = 0 .  (19) 
z = o, d Z  d ~  - ' d Z  

Consequently, for a specified value of K, numerical integration of the equations (18) (posed 
as an initial value problem) can proceed from the point Z = 0 in the direction of increasing 
Z. Since Z = 0 corresponds to the outer edge of the viscous layer, integration in this 
direction corresponds to integration toward the disc surface. A typical result obtained for 
f (Z ;  K), for K = 1.5, is shown in Fig. 1. The disc surface is located at Z = Zo, say, at which 
point f(Zo; K) = 0 (from equations (5) and (12)). Thus, the technique used for the accurate 
location of the point Z = Z o was as follows. Integration of equations (18) proceeded at 
regular intervals in Z until f (Z ;  K) < 0 (the point 1 in Fig. 1). However, the values of the 
dependent and independent variables had been retained at the preceding integration 
interval (the point 2 in Fig. 1). The equations (18) were then re-cast with f as the 
independent variable, i.e. 

0.6 

0.4 

f 

0.2 
2 

1 / / 

I I I I I , / / I  
o Z 6~ 

Figure 1. Graph o f f  against Z for K = 1.5. 
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dZ 1 dg V dh f 
,if u '  ,if u '  ,if z u '  

dU 1 d V  2 
= (f2 _ g2 _ 2ZhU) ,  ~ - (fg - ZhV) .  

U Z  2 aj a )  

(20) 

Integration of the equations (20) was then recommenced from the point 2 untilf(Zo; K) = 0 
was reached. Thus, the values of Z o, #(Zo; K), h(Zo; K), U(Zo; K) and V(Zo; K) were 
obtained. It follows from equations (11) and (12) that 

a I = c 2 Z o  , b 1 = a l /K ,  

A = - c ( 2 h ( Z o ;  K)  - 1), 

c = (g(Zo; K)) -~, 

F'(O) = - c 3 Z o U ( Z o ;  K), G'(O) = - cSZo V(Zo; K). 
(21) 

The velocity profiles of F(0, G(O and H((), if required, could then be obtained from 
equations (12) since the third of the equations (11) gives 

( =  _1 ln(Zo/Z)" (22) 
c 

Results obtained by this method for a range of values of K are given in Table 4. 
Confirmation of the results given in this table is provided by the series method based on 
equations (14) for those values of K for which the series contained in equations (14) 
converge. As we shall see, this restricts the possibility of confirmation to the cases 0 < K 
< 1.0701311. The values of the various parameters obtained from equations (14), enclosed 
in brackets, are included for comparison in Table 4. They confirm the accuracy of the 
integration method at least for these values of K. 

Equations (20) also provide a useful means of locating the nearest singularity in the series 
(12). Since the coefficients A, and B, in the latter series usually oscillate in sign, it follows 
that a singularity exists somewhere in the negative Z range. Thus, we presume that a 
singularity exists at Z = - R  (R I> 0), where R is the radius of convergence of the series (12). 
The method used for the evaluation of R for a specified value of K was as follows. Equations 
(20) were integrated in terms of f from f = 0 through the negative f range until a large 
negative value o f f  had been achieved (usually about - 102°), at which point Z approached 
the limit - R .  Note, once more, that this integration can be performed as an initial value 
problem, using the boundary conditions given in equations (18) and (19) at f = 0. From 
equations (18) it is possible to show that, as Z ~ - R , f  ~ (Z + R) -2, g ~ (Z + R) -2 and, 
in particular, h ~ - 3 R / ( Z  + R). Thus, at each stage of the integration, -hZ/(3 + h) (~- R)  

was calculated and was found to approach R rather faster than - Z  approached that limit. 
By the above means, values of R were established for the values of K indicated in Table 4 and 
the results for R are included in that table. In order to provide some confirmation of the 
values of R obtained by this integral procedure, the ratios A , _ I / A  . for n large were 
calculated for those values of K for which the series contained in equations (14) converge, 
i.e. K = 0.25, 0.5, 0.75, 1. Unfortunately, it was found that the convergence of A , _  1/A, was 
extremely slow and provided a poor estimate for R. However, since f ~ (Z + R) -2, the 
method of Domb and Sykes [13] is useful in dealing with this problem. In this method the 
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I I I I I I I I I I I I I  

~ v , z ~ ~ ~ - ~  ~ ~ ~ z ~  

E ~ 

~ ~ ~ ~ ~ ~ -  ~ ~ ~ ~ ~ ~ Z Z  

I l l l l l  

~ . ~ r ~  

~~ 

~.~ 
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\ 

R= 2.826 / 

\ 

-8 -6 -4 -2 0 2 4 
A 

Figure 2. Graphs of Zo, R against A. 

- - Z o , -  . . . .  R. 

variation of A,/A,_ 1 with 1/n is examined, the intercept at 1In = 0 giving a good estimate of 

R -  1. In fact, the method confirmed the first four figures of the values of R for K = 0.25, 0.5, 
0.75 and 1 quoted in Table 4. 

The series (12) provide uniformly valid solutions to equations (3) provided that Z o < R. 

It was deemed worthwhile to determine the values of K (and therefore A) at which Z o = R. 
The results given in Table 4 indicate that this condition occurs between K = 1 and K = 1.5. 
A simple iterative procedure, using Newton's method, established that Z o = R = 2.3713569 
when K = 1.0701311, at which value A = -0.5891804. On the other hand, for all positive 
values of A, the results given in Section 3 and in Table 4 suggest that Z o ~< R. 
Consequently, we can conclude that the series (12) provide uniformly valid solutions to 
equations (3) within the range 

-0.5891804 < A < + ~ .  (23) 

The behaviour of Z o and R with A is illustrated in Fig. 2. 

Clearly, for A ~< -0.5891804, the series method based directly on either equations (10) or 
(14) for the determination of a 1, bl and c becomes useless. However, even under these 
circumstances the series (7) and (12) are still convergent in the range Z < R. It is for this 
reason that the recurrence relations (13) can be used to determine the forms of the boundary 

conditions (18) and (19) for the differential equations (18) at Z = 0. The results given in 
Table 4 suggest that as K -~ ~ (at which limit it is presumed that A ~ - oo) R approaches a 
finite limit. In order to determine this limit, equations (20) have been used as described 
earlier in order to determine R for the case 1/K = 0. The resulting value of R was found to be 
R = 2.82545783 and this result is included in Table 4 and in Fig. 2. Kuiken's [5] results 
confirm that as A ~ - oo the series (7) and (12) remain valid in a finite region close to Z 
= 0; his results at the outer edge of the outer viscous region exhibit an exponential series 
form. The question then arises as to the forms the solutions take in the range R ~< Z ~< Z o- 
Some clues, perhaps, can be gained from the rather peculiar behaviour of the coefficients B, 
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(or b.) of the series. As we have noted earlier, the coefficients A, and B, usually oscillate in 
sign for successive values of n. However, as Benton [11] has noted for the case A = 0, the 
coefficients B23 and B24 have the same sign, both being negative. Furthermore, we have 
found that B253 and B254 a re  both positive. No such behaviour in the coefficients A, has 
been detected even though we have, on occasions, had to calculate up to Alo00. It should be 
noted that the values of n at which this behaviour in B, has occurred do not appear to vary 
with A. For most of the values of A used, we have had to obtain B23 and B24 and this lack of 
a dependence on A is quite consistent. As for the coefficients B253 and B254, these have had 
to be determined for the cases A = - 0.5, - 0.55 only but, once again, no dependence on A is 
indicated. It may be that this rather odd behaviour on the part of the coefficients B, may 
indicate the presence of further singularities, perhaps of a complex nature, in the series (7) 
and (12). As an indication of the possibly complex nature of these additional singularities, it 
has been noted that the form of the inner solution obtained by Kuiken [5] for A ~ - ~ ,  in 
the region of the disc, consists largely of trigonometric functions. 

5. Conclusions 

A series method has been discussed which provides solutions of high accuracy for the 
problem of steady rotating disc flow. It has been shown that the method covers all cases of 
surface suction and, in the limiting case, is in complete agreement with Stuart's [4] strong 
suction results. It has been shown further that low values of injection rate also can be dealt 
with by this method. For  those injection cases for which the method fails, an alternative 
approach based on the method of Samuel and Hall [9] is successful. In this alternative 
approach, differential equations have been developed which describe the behaviour of the 
sums of the series both within and outside the region of convergence. Two advantages have 
been shown to accrue from this alternative approach. The first is that the solution for the 
flow can be determined as an initial value problem. The second advantage of the approach 
has been shown to be the ease with which the radius of convergence of the series can be 
obtained. 

Once more, it is a pleasure to record the helpful advice of Dr. I. M. Hall. 

R E F E R E N C E S  

[1] T. von Kfirmfin, l~ber laminare und turbulente Reibung. Z. angew. Math. Mech., 1 (1921) 233-252. 
[2] W.G. Cochran, The flow due to a rotating disk. Proc. Cam. Phil. Soc., 30 (1934) 365-375. 
[3] H. Blasius, Grenzschichten in Fliissigkeiten mit kleiner Reibung. Z. Math. u. Phys., 56 (1908) 1-37. 
[4] J. T. Stuart, On the effects of uniform suction on the steady flow due to a rotating disk. Quart. J. Mech. Appl. 

Math., 7 (1954) 446-457. 
[5] H.K. Kuiken, The effect of normal blowing on the flow near a rotating disk of infinite extent. J. Fluid Mech., 

47 (1971) 789-798. 
[6] E. M. Sparrow and J. L. Gregg, Mass transfer, flow, and heat transfer about a rotating disk. Trans. A.S.M.E. 

(J. Heat Transfer) 82 (1960) 294-302. 
[7] J. A. D. Ackroyd, On the laminar compressible boundary layer with stationary origin on a moving flat wall. 

Proc. Cam. Phil. Soc., 63 (1967) 871-888. 
[8] R.C. Lock, The velocity distribution in the laminar boundary layer between parallel streams. Quart. J. Mech. 

Appl. Math., 4 (1951) 42-63. 

Journal of Engineerin# Math., Vol. 12 (1978) 207-220 



220 J. A. D. Ackroyd 

[9] T. D. M. A. Samuel and I. M. Hall, On the series solution to the laminar boundary layer with stationary 
origin on a continuous, moving porous surface. Proc. Cam. Phil. Soc., 73 (1973) 223-229. 

[10] H. E. Fettis, On the integration of a class of differential equations occurring in boundary layer and other 
hydrodynamic problems. Proc. Fourth Midwestern Conf. on Fluid Mech., Purdue (1955) 93-114. 

1-11] E. R. Benton, On the flow due to a rotating disk. J. Fluid Mech., 24 (1966) 781-800. 
[12] U. T. B6dewadt, Die Drehstr0mung fiber festem Grunde. Z. angew. Math. Mech., 20 (1940) 241-253. 
[13] C. Domb and M. F. Sykes, On the susceptibility of a ferromagnetic above the Curie point. Proc. Roy. Soc., A, 

240 (1957) 214-228. 

Journal of Engineering Math., Vol. 12 (1978) 207-220 


